
Published in: Australian Computer Science Communications, 13(1), pp29.1-29.12, 1991

A Capability-based Distributed Shared Memory

Frans A. Henskens and John Rosenberg
Department of Electrical Engineering and Computer Science

University of Newcastle
N.S.W. 2308

Australia

J. Leslie Keedy
Faculty of Mathematics and Computer Science

University of Bremen
Postbox 330440
2800 Bremen 33
West Germany

Abstract

In this paper we describe the implementation of a local area network of
experimental capability-based computers. The architecture of these
computers is unusual in supporting a persistent virtual memory with a very
large address size, eliminating the need for a separate file store. Because the
network extends this architecture by providing a global virtual memory with
addressing unique across the network, the use of the network is fully
transparent and existing software does not need to be modified in order to
make use of remote facilities.

1. INTRODUCTION

The MONADS Project at the University of Newcastle, Australia and at the University of
Bremen, West Germany, is primarily concerned with the development of a highly secure
computer system which supports a rational, engineering-like approach to the development of
computer software. As a step towards this goal an unconventional and novel computer
architecture [12, 13, 14, 24] has been designed and a prototype implementation of this
architecture, known as MONADS-PC [22], has been completed.

The most interesting features of this architecture include:

• hardware support for a very large persistent single-level store based on a paged
virtual address space,

• capability-based addressing utilising unique (forever) virtual addresses, providing
fine-grain control over access to data and code,

• a segmented addressing model which efficiently supports both large and small
segments and provides access to persistent and temporary objects in a uniform
manner, and

• direct support for the construction of software systems as information-hiding
modules.

In this paper we describe an extension to the MONADS architecture which supports a local
area network of MONADS-based computers. Given the uniform addressing model supported
by the MONADS architecture [12, 14, 24], the natural approach is to extend the addressing
scheme to encompass the entire network [2]. This has several advantages over the
conventional approach to network implementation.

These are:

• the interconnection of the processing units is totally transparent to users,

• objects are persistent on a network-wide basis,

• location transparency for objects is provided, so that the name of an object does not
define the node on which it resides,

• naming transparency for objects is provided, so that the same name used on
different nodes will identify the same object,

• coherency of shared objects is maintained by the system, and

• the owner of an object has capability-based control over access to the object on a
network wide basis.

The paper begins by describing the relevant features of the MONADS architecture and then
the extensions required in order to support network-wide addressing. The naming and
coherency schemes are briefly described and we conclude with an evaluation of the approach
taken.

2. THE EXISTING MONADS ARCHITECTURE

The MONADS architecture supports a very large virtual memory in which objects are
provided with unique addresses which are never re-used. Unlike conventional virtual
memories the MONADS virtual memory is persistent. This combination of large unique
addresses and persistency means that long-term data and code can be directly stored in the
virtual memory, obviating the need for a separate file store.

The virtual memory is decomposed into a collection of contiguous address ranges called
address spaces. Address spaces are allocated for use as process stacks, and as modules (see
below). An address space number (by which an address space is identified) is never re-used.

The programmer or compiler sees the contents of an address space as a collection of logical
segments, which are addressed via segment capabilities. A segment capability consists of the
full virtual address of the start of the segment, the segment length and access rights/type
information. Segment capabilities cannot be manufactured or arbitrarily modified by
programs, and thus provide the basic memory protection mechanism.

The kernel's memory management routines view an address space as a sequence of fixed
length pages, using a model in which page boundaries and segment boundaries are decoupled
[10]. Both small and large segments may thus be handled efficiently, without creating the
severe internal fragmentation usually associated with combined paging and segmentation
schemes [19, 21]. Segments are mapped onto the paged virtual address space via the segment
capabilities as shown in figure 1.

The MONADS architecture provides direct support for information-hiding modules. A
module consists of some private data and routines for accessing that data [11]. All of the data
segments belonging to a particular module are held in a single address space. In order to call
an interface procedure of another module the executing module must present a module
capability, which contains a unique module number, an access rights field (indicating which
of the module's interface procedures can be invoked using this capability) and some system
indicators. The module number is in fact the address space number of the address space
containing the encapsulated segments. Each module address space contains some red-tape
information from which the location of the code procedures for that module type can be
obtained. A user application typically consists of a number of interacting modules.

 Unique Name
(Start Address)

Length Access Information

Segment Capability

Virtual Memory Pages

Figure 1: Mapping of Segments onto Paged Virtual Memory

Each MONADS node has an associated address translation unit (ATU) [1] which maps
virtual memory addresses onto physical memory addresses. This ATU is effectively an
inverted page table implemented as a hash table with embedded overflow (in hardware) and
its size is thus proportional to the size of physical memory. Hence the use of large virtual
addresses does not greatly affect the speed of translation. The structure of a virtual address is
shown in figure 2.

The complete addressing process is therefore as follows. A segment capability is used to
address a particular segment. The virtual address from this segment capability is added to an
offset from the instruction to generate the virtual address of the data to be accessed. The page
address portion of the virtual address is hashed and looked up in the ATU. If a match is found
then the physical memory address of the required page is obtained from the ATU and the

access may proceed. This process is illustrated in figure 3. Otherwise a page fault interrupt
occurs and control is transferred to the MONADS kernel. The kernel loads the required page
into memory from disk, updates the ATU hash table and retries the instruction. In addition to
the access rights checking included at the segment capability level, the ATU also supports
read-only pages and causes an exception if an attempt is made to write to a read-only page.

Address Space Number Offset Within Address Space

Figure 2: A Virtual Address (Existing Architecture)

A MONADS node may have several disk drives. To facilitate the location of pages on disk,
all the pages of an address space reside on the same disk. The address space number is sub-
divided into two fields called the volume number and the within volume address space
number. The volume number is the logical disk number of the disk on which the address
space is stored. The logical disk number of each disk is written into a well-defined location
within the first block of each disk so that the disk may be identified on power-up. The kernel
dynamically maintains a table mapping physical disk drives to logical disk numbers. The
within volume address space number is unique (forever) for that volume. Each volume
contains a volume directory in which the address spaces stored on that volume (and the
location of their first page on disk) are defined. The disk page table for each address space is
stored in the address space itself. Thus, on a page fault, the volume number field of the
violating virtual address will identify the disk on which the page resides, the volume
directory will indicate the disk address of the first page of the address space and, using this,
the disk address of the required page may be located.

Within Segment Offset

Segment Capability

Volume Number Within Volume Address Space Offset

+

Volume Number Page

Virtual Address of Data (60 bits)
=

Within Volume Address Space Offset in Page

Address

Translation

Unit

Main Memory Page Frame Number Offset in Page

Main Memory Address (23 bits)

Figure 3: MONADS-PC Address Translation

Virtual Page Number

Segment Name Length Access Info

The MONADS-PC implementation of the architecture has 60-bit virtual addresses, consisting
of a 32-bit address space number and a 28-bit offset within address space. The latter is further
decomposed into a 16-bit within address space page number and a 12-bit offset within page.
MONADS-PC pages are thus 4K bytes long. Address space numbers are subdivided into a 6-
bit volume number and a 26-bit within volume address space number as in figure 41. We are
currently involved in a new implementation of the MONADS architecture known as the
MONADS-MM which will support, amongst other things, a very large physical memory (in
the order of gigabytes) [25].

Figure 4: Full Structure Of A Virtual Address (Existing Architecture)

Volume Number Within Volume Address Space Number Offset
(6 bits) (26 bits) (16 bits)

Within AS Page
(12 bits)

1 The size of some of these fields, particularly the volume number, is clearly too small for a realistic system. MONADS-PC
was always viewed as a prototype implementation. The MONADS-MM, a new implementation of the architecture, will have
128 bit virtual addresses, a 64 bit volume number, a 32 bit within volume address space number and a 32 bit offset within
address space.

3. THE NETWORK EXTENSIONS

The addressing scheme described above provides a large single-level store for a single
MONADS-PC system. The approach taken in the network implementation is to extend this
virtual store to encompass the entire network. This is achieved in a completely transparent
fashion, so that any byte within the entire network may be directly and uniquely addressed
from any machine in the network.

In the following discussion we are concerned with how the virtual store is extended, and
therefore issues concerning the actual physical connections between machines are ignored.
We simply assume that it is possible to transfer data between any two machines2.

3.1. Node Numbers

To achieve uniqueness in naming across the network, a node number is allocated to each
MONADS system3 . Every node on a network (and in the world) has a unique node number
and each logical disk on a node has a unique number within that node4. A full virtual address
now consists of a unique node number, a volume number within node, an address space
number within volume and an offset within address space. This structure is shown in figure 5.
When a new address space is created it is allocated an address space number with the unique
node number of the creator embedded within it. Thus every address space number, and
therefore module number, is unique network-wide.

Figure 5: Structure Of A Virtual Address (Network Architecture)

Volume Number Within Volume Address Space Number OffsetWithin AS PageNode Number

The algorithm for resolving a page fault is extended as follows. On a page fault the kernel
inspects the node number of the virtual address. If it is the local node number then the
resolution proceeds as described earlier and the page is retrieved from a local disk. On the
other hand, if the node number is not the local one then, subject to the discussion in section
3.3, the page fault is considered to be a remote page fault. A message is transmitted over the
network to the node specified in the virtual address, requesting that a copy of the
corresponding page be sent. To enable this, the kernel maintains a table mapping node
numbers to network addresses for nodes in a similar manner to the ARP/RARP protocol [6].
The processing of the page fault in the local node is identical once the page has been
received, regardless of whether it came from a local disk or a remote node.

Each node with disks must provide a page server facility. Apart from the coherency issues
discussed in section 3.4, this involves little extension to the existing local page fault
resolution mechanism. On receipt of a request for a page the node determines whether the
requested page is already in physical memory. If it is not, then it must be paged in. This is
achieved using the existing mechanisms by simulating a page fault on the required page. The
page is then transmitted to the requesting node. When the page is received by the requesting

2 In the prototype implementation all machines are connected to an ethernet.

3 For the modified MONADS-PC, the volume number field of a virtual address is divided into two fields called the node
number and the within node volume number. The node number is 2 bits and the within node volume number is 4 bits.

4 The fields of a virtual address on MONADS-MM are large enough to ensure that this is possible. Node numbers are 32
bits and within node volume numbers are 32 bits.

node, it is mapped into the local ATU and the waiting process(es) reactivated as for a local
page fault.

3.2 Naming Transparency

In order to achieve naming transparency, we take advantage of the fact that on a MONADS
system access to all modules is via capabilities. A capability contains, amongst other things,
the virtual address of the address space containing the segments belonging to that module.
Since virtual addresses are unique forever, a segment thus has a unique name. This eliminates
many of the naming problems traditionally associated with networks [20] since every byte
stored in the network has a unique name and will only ever be referenced via that name. In
this sense naming is a non-issue in the MONADS style of network.

3.3. Location Transparency

The addressing scheme discussed in section 3.1 describes how an address space number is
allocated when a module is created and how the segments of the module can be located in the
simple case that it continues to be mounted at the node where it was created. It is clear,
however, that a realistic scheme must allow modules to be moved between disks and disks to
be mounted at different nodes. In such circumstances the virtual addresses of modules are not
changed, but from the viewpoint of module location the node number and within node
volume number of a virtual address are treated as advisory. At each node the kernel holds
appropriate further tables to assist in the location of modules which have been relocated.
Since the expectation is that most modules are not relocated, these tables hold only exception
information. This is in contrast with the IVY system where each node must maintain a
complete copy of the page table for the shared virtual store [16].

The local mount table maps between a unique volume number (node number concatenated
with the within node volume number) and a physical drive mounted at a node. For disks
created by the node each entry in this table has the same node number as the local node, but
the table allows disks created at other nodes to be mounted.

Each node maintains a foreign mount table which allows remote volumes which have been
moved to be found. This table maps between relocated unique volume numbers and the nodes
at which they are currently mounted. Both the local and foreign mount tables are maintained
dynamically on a need to know basis via a protocol of messages over the network. In order to
locate a volume the page fault code checks the local mount table and then the foreign mount
table, and then it uses the node number in the virtual address. If the volume has been moved
from that node, the reply takes the form of an advisory message, enabling the requesting node
to update its foreign mount table and to redirect the page request. A failure indicates that the
disk is not on line anywhere in the network.

Since access to a module is controlled by a module capability, and since several copies of a
capability can exist in a MONADS network, it is imperative that relocation of a module (as
distinct from the relocation of the volume on which the module is stored) leaves the module's
capability (and hence name) unchanged. To allow moving of an individual module from one
volume to another without changing the module's name, a combination of a forwarding
address on the module's old volume, an advisory field in the module capability, and a moved
object table is used. This information allows any page of a relocated module to be found
without the need for broadcast messages, as used in IVY [16] to improve the efficiency of
page retrieval.

The issues discussed in this section are more fully described in [3].

3.4. Coherency

At any time there may be several copies of a particular page in the memory of different
machines. This creates a coherency problem which is similar to that of cache coherency in
multiprocessors [7, 15, 17]. Consequently similar techniques may be applied. The following
is a brief description of the protocol adopted. A complete description appears in [2].

As mentioned earlier, pages in physical memory may be marked as read-only or read/write in
the ATU. The default state for a page read from a local disk is read-write while the default
state for a remote page is read-only. Any number of read-only copies of a page are allowed to
exist in the physical memories of nodes in the network at any one time. The coherency
protocol guarantees that at any time there are either (a) zero or more read-only copies of the
page or (b) exactly one read-write copy. Thus, if a read-write copy of a page exists in the
physical memory of a node, then it is the only copy of the page in physical memory of any
node in the network. The kernel of the node at which a page is stored on disk (the "owner
node") maintains a record of any copies of a page that have been sent to other nodes in much
the same way as page owners in IVY [16] keep a copy set for each page. Unlike the "shares"
approach proposed in [9], which allows any node to distribute copies of a "granule" (subject
to its share status), a MONADS owner node is the only node allowed to provide a copy of a
page to resolve a page fault at another node.

When a request for a read-only copy of a page is made to the owner node, one of several
scenarios may apply:

1. no copy of the page exists in main memory network-wide,

2. one or more read-only copies of the page exist in main memory network-wide, or

3. a read/write copy of the page exists in the main memory of a node.

These situations are handled respectively as follows:

1. a copy of the page is obtained from disk on the owner node, and then the copy is
transmitted to the requesting node (if the request is remote) with read-only access
rights;

2. if a copy of the page exists in the physical memory of the owner node, it is
transmitted to the requesting node, otherwise a copy of the page is brought into the
memory of the owner node and then the page is transmitted with read-only access
rights;

3. the node with the read/write copy is requested to mark its copy as read-only, and to
transmit to the owner node either an updated copy of the page, or a message
indicating that the page has not been modified since the read/write access was
granted. The owner node then maintains a record of the requesting node's access,
and transmits a read-only copy of the page.

If a node which has a read-only copy of a page wishes to write to the page, the owner node is
informed. The owner node then sends a message to all nodes which have read-only copies of
the page (except for the node requesting read/write access) requesting that the page be
removed from the nodes' memories. When these requests have been completed with the
owner sends a message to the requesting node giving permission for the access to be changed
to read-write.

As part of the management of virtual memory at a node, page discard may occur. If the page
to be removed is not local, either (a) the page is read-only, or unmodified read/write, in
which cases a message is sent to the owner node indicating that the page has been removed,
allowing the owner node to update its records or (b) the page is modified read/write, in which
case a copy of the page is sent to the owner node and the page is not removed until receipt of
the page has been confirmed by the owner node.

This protocol guarantees that all nodes see a consistent view of a page. It can result in
considerable network traffic in the case that several nodes are constantly modifying the same
page, since the page must be sent back to the owner node each time for distribution.
However, this is not a particularly likely scenario since, in order to keep the modifications
consistent, the processes on the nodes would have to synchronise their activities at a logical
level5. Coherency protocol messages are only sent to nodes listed by the owner node as
having copies of the page, requiring fewer messages than schemes such as "shares" [9],
which broadcasts protocol messages, requiring the processing of messages by nodes with no
interest in the subject page.

3.5. Network Wide Protection

For the same reason that network naming is a non-issue, protection of data across the network
creates no logical difficulties. The architecture does not distinguish between addressing local
and remote data and thus the capability-based protection scheme provides control over access
to all data. The problem of protection of data whilst in transit between nodes is of course
another issue. To solve this we propose to encrypt data, with encryption being performed
directly by the network hardware interface during transmission to reduce overheads.

3.6. Shutdown of a Node

At any particular time the memory of each node contains an essentially random set of pages
which may belong to an arbitrary set of nodes. It is important for system integrity that, before
a node is shut down, any pages which have been modified are written back to disk. In
addition, remote nodes must be notified so that the coherency control data described above
may be updated appropriately.

During system shutdown the kernel scans all pages of memory and determines, from
information held in the ATU, which pages have been modified. Modified pages belonging to
a local disk are simply written back, while modified pages belonging to remote nodes must
be transmitted to the owner node. Shutdown does not complete until acknowledgement of
receipt is received from all remote nodes involved. If the node being shut down has a read-
only copy of a remote page, it notifies the owner node that it is shutting down so that the
owner node can update its coherency information.

The node must also retrieve an up to date copy of any of its pages that currently exist with
read/write access in the physical memories of remote nodes and any nodes containing copies
of pages with read-only access must be instructed to remove them from their memory. Access
to a removed page by a process at the remote node results in an exception condition.

3.7. Crash of a Node

5 In any case the effects of such a situation on network traffic can be considerably reduced (but not entirely eliminated) by
introducing a small delay before removing write access from a page.

As was described in the previous section it is critical for the correct operation of the system
that, when a node goes off-line, it performs the correct shutdown sequence. Unfortunately
this may not be possible in the case of a system crash at a node. Such a crash may be due to
hardware or software failure and in both cases it is unlikely that a normal shutdown will be
possible. Within a single node the consistency and integrity of the store can be guaranteed by
using shadow paging [18], as described in [4, 26, 27], to implement a stable store.

In [23] we describe how to implement a stable store on a single MONADS-PC. Each volume
is moved from one stable state to the next by a sequence of checkpoint operations.
Checkpoint operations may be instigated by a system call from a user program, or
automatically by the kernel, for example to free up disk space occupied by shadow pages. A
Shadowed Pages Table (SPT) is maintained for each volume to detect which pages from the
volume have been shadowed since the last checkpoint operation. Stability is achieved on a
per volume basis, and there is a multi-volume stabilise to ensure that cross-references
between volumes do not cause inconsistencies following a crash. Only modified pages are
shadowed, and at most two copies of a page exist on disk at any time, the latest version and
the version as at the last checkpoint. At each checkpoint, reference to the SPT allows the disk
space used to store the previous stable version of modified pages to be returned to the free
disk space pool. The new stable version of pages form the basis for further system operation.

As described earlier, each MONADS volume contains a volume directory, which exists in
virtual memory. The root page of the volume is effectively the root of a tree of disk addresses
of pages on the volume, and from it the disk location of any page on the volume can be
located. After a checkpoint operation, a new tree is constructed, leaving the tree representing
the last stable state intact. The last stage of a stabilise operation on a volume is the writing of
the root page of the tree to one of two possible locations using Challis' algorithm [5] to
ensure that the write operation is atomic. Both of the root pages are placed at well known
disk locations so that they can be located and compared on system startup. Thus, following a
crash, the store returns to the last consistent state.

In the network environment there are several new problems. These include:

• a request for a read/write copy of a page being denied because a "crashed" node has
not signalled its removal of the page from its page table,

• requests for read-only access to a page being denied because a read/write copy of a
page exists on a non-responding node, and

• a node is unable to complete its shutdown sequence because it cannot return
modified pages to a node which has crashed.

These problems are serious because they can result in a deadlock situation in addition to the
loss of data integrity. In [8] we describe extensions and modifications to the single node
stability scheme that ensure stability in a network of MONADS-PC computers.

4. EVALUATION

Implementation of the network involved changes to the page-fault handler and creation of a
"black box" process which looks like a disk to the page-fault handler.

Modifications to the page-fault handler enable it to (a) detect local and remote faults and to
request pages from local disks or remote nodes as necessary, (b) provide a page server
function for remote nodes, (c) maintain tables as described above, (d) maintain data
coherency, (e) take appropriate action at system shutdown, and (f) maintain system stability.

The new "network" kernel process accepts page requests from the page-fault handler in
exactly the same way as does the disk process. It hides network details (such as the
underlying network architecture) from the rest of the MONADS kernel by (a) maintaining
information about physical addresses and which nodes are currently on line, and (b)
providing pages to the page-fault handler by requesting them from the appropriate remote
node.

The network process supports two types of message, short messages for page requests and
protocol implementation, and long messages for page transfer. Page transfers are 4K bytes
each. For small (less than 4K byte) objects, the unit of transfer is therefore larger than the
object size, which means that the quantity of data transmitted between nodes is more than
immediately required. Many applications exhibit locality of reference, in which case some of
the apparently superflous data will in fact be needed in subsequent memory accesses6. For
objects larger than one MONADS page, the described system is more efficient than systems
that move the whole object to a remote node for processing at that node since only the pages
of the object that are being processed are transferred.

Application software written to run on a non-networked MONADS processor runs without
change on a network of MONADS nodes in a stable virtual store. This is possible because, as
explained earlier, pages of data are transferred in order to resolve page faults rather than in
response to network specific commands.

5. CONCLUSION

Traditionally the implementation of a network involves major changes to the system software
and application software and the provision of large and complex utility software. In this
paper we have described an alternative structure based on a network-wide uniform virtual
memory. Security and protection are achieved via the use of capability-based addressing and
coherency is guaranteed by the paging protocol. The store we have created exhibits stability,
so that consistency of data following node or network failure is guaranteed. A major
advantage of the scheme is that it involves little modification to the system software and is
fully transparent to application software.

A trial implementation of the network is currently being completed. The trial system uses
ethernet as the physical medium and will have three MONADS-PC computers as nodes. Our
experiences with this system will be reported at a future date.

ACKNOWLEDGEMENTS

The MONADS project is supported by grants from the Australian Research Council and the
Newcastle University Senate Research Committee. Thanks are also due to Dr. D. Abramson
and Mr. P. Brössler for their earlier contributions and suggestions.

REFERENCES

1. Abramson, D. A. "Hardware Management of a Large Virtual Memory", Proc. 4th
Australian Computer Science Conference, Brisbane, pp. 1-13, 1981.

6 Conventional paged virtual memories also rely on this locality in order to achieve acceptable performance.

2. Abramson, D. A. and Keedy, J. L. "Implementing a Large Virtual Memory in a
Distributed Computing System", Proc. 18th Hawaii Conference on System Sciences,
pp. 515-522, 1985.

3. Brössler, P., Henskens, F. A., Keedy, J. L. and Rosenberg, J. "Addressing Objects in a
Very Large Distributed System", Proc. IFIP Conference on Distributed Systems,
Amsterdam, pp. 105-116, 1987.

4. Brown, A. L., Connor, R. C. H., Carrick, R., Dearle, A. and Morrison, R. "The
Persistent Abstract Machine", Universities of Glasgow and St. Andrews, Persistent
Programming Research Report PPRR-59-88, 1988.

5. Challis, M. F. "Database Consistency and Integrity in a Multi-user Environment",
Databases: Improving Usability and Responsiveness, ed B. Scheiderman, Academic
Press, pp. 245-270, 1978.

6. Comer, D. "Internetworking With TCP/IP - Principles, Protocols and Architecture",
Prentice Hall, pp. 49-63, 1988.

7. Delp, G. S. "The Architecture and Implementation of Memnet: a High-Speed Shared-
Memory Computer Communication Network", University of Delaware, Udel-EE
Technical Report Number 88-05-1, 1988.

8. Henskens, F. A., Rosenberg, J. and Hannaford, M. R. "Stability in a Network of
MONADS-PC Computers", Proceedings of the International Workshop on Computer
Architectures to support Security and Persistence of Information, Bremen, West
Germany, ed J. Rosenberg and J. L. Keedy, Springer-Verlag and British Computer
Society, pp. 246-256, 1990.

9. Hsu, M. and Tam, V. "Managing Databases in Distributed Virtual Memory", Harvard
University, Technical Report TR-07-88, 1988.

10. Keedy, J. L. "Paging and Small Segments: A Memory Management Model", Proc.
IFIP-80, 8th World Computer Congress, Melbourne, Australia, pp. 337-342, 1980.

11. Keedy, J. L. "The MONADS View of Software Modules", Proc., 9th Australian
Computer Conference, Hobart, pp. 560-574, 1982.

12. Keedy, J. L. "A Memory Architecture for Object-Oriented Systems", Objekt-orientierte
Software und Hardwarearchitekturen, ed H. Stoyan and H. Wedekind, Teubner-Verlag,
Stuttgard, pp. 238-250, 1983.

13. Keedy, J. L. "An Implementation of Capabilities without a Central Mapping Table",
Proc. 17th Hawaii International Conference on System Sciences, pp. 180-185, 1984.

14. Keedy, J. L. and Rosenberg, J. "Support for Objects in the MONADS Architecture",
Proceedings of the International Workshop on Persistent Object Systems, Newcastle,
Australia, ed J. Rosenberg and D. M. Koch, to be published by Springer-Verlag, 1989.

15. Knapp, V. and Baer, J.-L. "Virtually Addressed Caches for Multiprogramming and
Multiprocessor Environments", Proc., 18th Hawaii International Conference on System
Sciences, pp. 477-486, 1985.

16. Li, K. "Shared Virtual Memory on Loosely Coupled Multiprocessors", Ph.D. Thesis,
Yale University, 1986.

17. Linn, C. and Linn, J. "The Carrick-on-Shannon Architecture: A two-level Cache-
Coupled Multiprocessor Architecture", Proc., 18th Hawaii International Conference on
System Sciences, pp. 487-504, 1985.

18. Lorie, R. A. "Physical Integrity in a Large Segmented Database", ACM Transactions on
Database Systems, 2,1, pp. 91-104, 1977.

19. Organick, E. I. "The Multics System: An Examination of its Structure", MIT Press,
Cambridge, Mass., 1972.

20. Popek, J. and Walker, B. "The LOCUS Distributed System Architecture", The MIT
Press Series on Computer Systems, pp. 14-17, 40-46, 1985.

21. Randell, B. "A Note on Storage Fragmentation and Program Segmentation",
Communications of the ACM, 12, 7, pp. 365-369, 1969.

22. Rosenberg, J. and Abramson, D. A. "MONADS-PC: A Capability Based Workstation
to Support Software Engineering", Proc, 18th Hawaii International Conference on
System Sciences, pp. 515-522, 1985.

23. Rosenberg, J., Henskens, F. A., Brown, A. L., Morrison, R. and Munro, D. "Stability in
a Persistent Store Based on a Large Virtual Memory", Proceedings of the International
Workshop on Architectural Support for Security and Persistence of Information,
Bremen, West Germany, ed J. Rosenberg and J. L. Keedy, Springer-Verlag and British
Computer Society, pp. 229-245, 1990.

24. Rosenberg, J. and Keedy, J. L. "Object Management and Addressing in the MONADS
Architecture", Proceedings of the International Workshop on Persistent Object
Systems, Appin, Scotland, 1987.

25. Rosenberg, J., Koch, D. M. and Keedy, J. L. "A Massive Memory Supercomputer",
Proc. 22nd Hawaii International Conference on System Sciences, vol 1, pp. 338-345,
1989.

26. Ross, D. M. "Virtual Files: A Framework for Experimental Design", University of
Edinburgh, CST-26-83, 1983.

27. Thatte, S. M. "Persistent Memory", Proc. IEEE Workshop on Object-Oriented DBMS,
pp. 148-159, 1986.

