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Abstract 

 
In this paper we describe the implementation of a local area network of 
experimental capability-based computers. The architecture of these 
computers is unusual in supporting a persistent virtual memory with a very 
large address size, eliminating the need for a separate file store. Because the 
network extends this architecture by providing a global virtual memory with 
addressing unique across the network, the use of the network is fully 
transparent and existing software does not need to be modified in order to 
make use of remote facilities. 

1.  INTRODUCTION 

The MONADS Project at the University of Newcastle, Australia and at the University of 
Bremen, West Germany, is primarily concerned with the development of a highly secure 
computer system which supports a rational, engineering-like approach to the development of 
computer software. As a step towards this goal an unconventional and novel computer 
architecture [12, 13, 14, 24] has been designed and a prototype implementation of this 
architecture, known as MONADS-PC [22], has been completed. 

The most interesting features of this architecture include: 

• hardware support for a very large persistent single-level store based on a paged 
virtual address space, 

• capability-based addressing utilising unique (forever) virtual addresses, providing 
fine-grain control over access to data and code, 

• a segmented addressing model which efficiently supports both large and small 
segments and provides access to persistent and temporary objects in a uniform 
manner, and 

• direct support for the construction of software systems as information-hiding 
modules. 



In this paper we describe an extension to the MONADS architecture which supports a local 
area network of MONADS-based computers. Given the uniform addressing model supported 
by the MONADS architecture [12, 14, 24], the natural approach is to extend the addressing 
scheme to encompass the entire network [2]. This has several advantages over the 
conventional approach to network implementation. 

These are: 

• the interconnection of the processing units is totally transparent to users, 

• objects are persistent on a network-wide basis, 

• location transparency for objects is provided, so that the name of an object does not 
define the node on which it resides, 

• naming transparency for objects is provided, so that the same name used on 
different nodes will identify the same object, 

• coherency of shared objects is maintained by the system, and 

• the owner of an object has capability-based control over access to the object on a 
network wide basis. 

The paper begins by describing the relevant features of the MONADS architecture and then 
the extensions required in order to support network-wide addressing. The naming and 
coherency schemes are briefly described and we conclude with an evaluation of the approach 
taken. 

2.  THE EXISTING MONADS ARCHITECTURE 

The MONADS architecture supports a very large virtual memory in which objects are 
provided with unique addresses which are never re-used. Unlike conventional virtual 
memories the MONADS virtual memory is persistent. This combination of large unique 
addresses and persistency means that long-term data and code can be directly stored in the 
virtual memory, obviating the need for a separate file store. 

The virtual memory is decomposed into a collection of contiguous address ranges called 
address spaces. Address spaces are allocated for use as process stacks, and as modules (see 
below). An address space number (by which an address space is identified) is never re-used. 

The programmer or compiler sees the contents of an address space as a collection of logical 
segments, which are addressed via segment capabilities. A segment capability consists of the 
full virtual address of the start of the segment, the segment length and access rights/type 
information. Segment capabilities cannot be manufactured or arbitrarily modified by 
programs, and thus provide the basic memory protection mechanism. 

The kernel's memory management routines view an address space as a sequence of fixed 
length pages, using a model in which page boundaries and segment boundaries are decoupled 
[10]. Both small and large segments may thus be handled efficiently, without creating the 
severe internal fragmentation usually associated with combined paging and segmentation 
schemes [19, 21]. Segments are mapped onto the paged virtual address space via the segment 
capabilities as shown in figure 1. 



The MONADS architecture provides direct support for information-hiding modules. A 
module consists of some private data and routines for accessing that data [11]. All of the data 
segments belonging to a particular module are held in a single address space. In order to call 
an interface procedure of another module the executing module must present a module 
capability, which contains a unique module number, an access rights field (indicating which 
of the module's interface procedures can be invoked using this capability) and some system 
indicators. The module number is in fact the address space number of the address space 
containing the encapsulated segments. Each module address space contains some red-tape 
information from which the location of the code procedures for that module type can be 
obtained. A user application typically consists of a number of interacting modules. 
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Figure 1: Mapping of Segments onto Paged Virtual Memory  

Each MONADS node has an associated address translation unit (ATU) [1] which maps 
virtual memory addresses onto physical memory addresses. This ATU is effectively an 
inverted page table implemented as a hash table with embedded overflow (in hardware) and 
its size is thus proportional to the size of physical memory. Hence the use of large virtual 
addresses does not greatly affect the speed of translation. The structure of a virtual address is 
shown in figure 2. 

The complete addressing process is therefore as follows. A segment capability is used to 
address a particular segment. The virtual address from this segment capability is added to an 
offset from the instruction to generate the virtual address of the data to be accessed. The page 
address portion of the virtual address is hashed and looked up in the ATU. If a match is found 
then the physical memory address of the required page is obtained from the ATU and the 



access may proceed. This process is illustrated in figure 3. Otherwise a page fault interrupt 
occurs and control is transferred to the MONADS kernel. The kernel loads the required page 
into memory from disk, updates the ATU hash table and retries the instruction. In addition to 
the access rights checking included at the segment capability level, the ATU also supports 
read-only pages and causes an exception if an attempt is made to write to a read-only page. 

Address Space Number Offset Within Address Space

Figure 2: A Virtual Address (Existing Architecture)  

A MONADS node may have several disk drives. To facilitate the location of pages on disk, 
all the pages of an address space reside on the same disk. The address space number is sub-
divided into two fields called the volume number and the within volume address space 
number. The volume number is the logical disk number of the disk on which the address 
space is stored. The logical disk number of each disk is written into a well-defined location 
within the first block of each disk so that the disk may be identified on power-up. The kernel 
dynamically maintains a table mapping physical disk drives to logical disk numbers. The 
within volume address space number is unique (forever) for that volume. Each volume 
contains a volume directory in which the address spaces stored on that volume (and the 
location of their first page on disk) are defined. The disk page table for each address space is 
stored in the address space itself. Thus, on a page fault, the volume number field of the 
violating virtual address will identify the disk on which the page resides, the volume 
directory will indicate the disk address of the first page of the address space and, using this, 
the disk address of the required page may be located. 
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The MONADS-PC implementation of the architecture has 60-bit virtual addresses, consisting 
of a 32-bit address space number and a 28-bit offset within address space. The latter is further 
decomposed into a 16-bit within address space page number and a 12-bit offset within page. 
MONADS-PC pages are thus 4K bytes long. Address space numbers are subdivided into a 6-
bit volume number and a 26-bit within volume address space number as in figure 41. We are 
currently involved in a new implementation of the MONADS architecture known as the 
MONADS-MM which will support, amongst other things, a very large physical memory (in 
the order of gigabytes) [25]. 

Figure 4: Full Structure Of A Virtual Address (Existing Architecture)
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1 The size of some of these fields, particularly the volume number, is clearly too small for a realistic system. MONADS-PC 
was always viewed as a prototype implementation. The MONADS-MM, a new implementation of the architecture, will have 
128 bit virtual addresses, a 64 bit volume number, a 32 bit within volume address space number and a 32 bit offset within 
address space. 



3.  THE NETWORK EXTENSIONS 

The addressing scheme described above provides a large single-level store for a single 
MONADS-PC system. The approach taken in the network implementation is to extend this 
virtual store to encompass the entire network. This is achieved in a completely transparent 
fashion, so that any byte within the entire network may be directly and uniquely addressed 
from any machine in the network. 

In the following discussion we are concerned with how the virtual store is extended, and 
therefore issues concerning the actual physical connections between machines are ignored. 
We simply assume that it is possible to transfer data between any two machines2. 

3.1.  Node Numbers 

To achieve uniqueness in naming across the network, a node number is allocated to each 
MONADS system3 . Every node on a network (and in the world) has a unique node number 
and each logical disk on a node has a unique number within that node4. A full virtual address 
now consists of a unique node number, a volume number within node, an address space 
number within volume and an offset within address space. This structure is shown in figure 5. 
When a new address space is created it is allocated an address space number with the unique 
node number of the creator embedded within it. Thus every address space number, and 
therefore module number, is unique network-wide. 

Figure 5: Structure Of A Virtual Address (Network Architecture)
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The algorithm for resolving a page fault is extended as follows. On a page fault the kernel 
inspects the node number of the virtual address. If it is the local node number then the 
resolution proceeds as described earlier and the page is retrieved from a local disk. On the 
other hand, if the node number is not the local one then, subject to the discussion in section 
3.3, the page fault is considered to be a remote page fault. A message is transmitted over the 
network to the node specified in the virtual address, requesting that a copy of the 
corresponding page be sent. To enable this, the kernel maintains a table mapping node 
numbers to network addresses for nodes in a similar manner to the ARP/RARP protocol [6]. 
The processing of the page fault in the local node is identical once the page has been 
received, regardless of whether it came from a local disk or a remote node. 

Each node with disks must provide a page server facility. Apart from the coherency issues 
discussed in section 3.4, this involves little extension to the existing local page fault 
resolution mechanism. On receipt of a request for a page the node determines whether the 
requested page is already in physical memory. If it is not, then it must be paged in. This is 
achieved using the existing mechanisms by simulating a page fault on the required page. The 
page is then transmitted to the requesting node. When the page is received by the requesting 
                                                 
2 In the prototype implementation all machines are connected to an ethernet. 
 
3 For the modified MONADS-PC, the volume number field of a virtual address is divided into two fields called the node 
number and the within node volume number. The node number is 2 bits and the within node volume number is 4 bits. 
 
4 The fields of a virtual address on MONADS-MM are large enough to ensure that this is possible. Node numbers are 32 
bits and within node volume numbers are 32 bits. 



node, it is mapped into the local ATU and the waiting process(es) reactivated as for a local 
page fault. 

3.2  Naming Transparency 

In order to achieve naming transparency, we take advantage of the fact that on a MONADS 
system access to all modules is via capabilities. A capability contains, amongst other things, 
the virtual address of the address space containing the segments belonging to that module. 
Since virtual addresses are unique forever, a segment thus has a unique name. This eliminates 
many of the naming problems traditionally associated with networks [20] since every byte 
stored in the network has a unique name and will only ever be referenced via that name. In 
this sense naming is a non-issue in the MONADS style of network. 

3.3.  Location Transparency 

The addressing scheme discussed in section 3.1 describes how an address space number is 
allocated when a module is created and how the segments of the module can be located in the 
simple case that it continues to be mounted at the node where it was created. It is clear, 
however, that a realistic scheme must allow modules to be moved between disks and disks to 
be mounted at different nodes. In such circumstances the virtual addresses of modules are not 
changed, but from the viewpoint of module location the node number and within node 
volume number of a virtual address are treated as advisory. At each node the kernel holds 
appropriate further tables to assist in the location of modules which have been relocated. 
Since the expectation is that most modules are not relocated, these tables hold only exception 
information. This is in contrast with the IVY system where each node must maintain a 
complete copy of the page table for the shared virtual store [16]. 

The local mount table maps between a unique volume number (node number concatenated 
with the within node volume number) and a physical drive mounted at a node. For disks 
created by the node each entry in this table has the same node number as the local node, but 
the table allows disks created at other nodes to be mounted. 

Each node maintains a foreign mount table which allows remote volumes which have been 
moved to be found. This table maps between relocated unique volume numbers and the nodes 
at which they are currently mounted. Both the local and foreign mount tables are maintained 
dynamically on a need to know basis via a protocol of messages over the network. In order to 
locate a volume the page fault code checks the local mount table and then the foreign mount 
table, and then it uses the node number in the virtual address. If the volume has been moved 
from that node, the reply takes the form of an advisory message, enabling the requesting node 
to update its foreign mount table and to redirect the page request. A failure indicates that the 
disk is not on line anywhere in the network. 

Since access to a module is controlled by a module capability, and since several copies of a 
capability can exist in a MONADS network, it is imperative that relocation of a module (as 
distinct from the relocation of the volume on which the module is stored) leaves the module's 
capability (and hence name) unchanged. To allow moving of an individual module from one 
volume to another without changing the module's name, a combination of a forwarding 
address on the module's old volume, an advisory field in the module capability, and a moved 
object table is used. This information allows any page of a relocated module to be found 
without the need for broadcast messages, as used in IVY [16] to improve the efficiency of 
page retrieval. 

The issues discussed in this section are more fully described in [3]. 



3.4.  Coherency 

At any time there may be several copies of a particular page in the memory of different 
machines. This creates a coherency problem which is similar to that of cache coherency in 
multiprocessors [7, 15, 17]. Consequently similar techniques may be applied. The following 
is a brief description of the protocol adopted. A complete description appears in [2]. 

As mentioned earlier, pages in physical memory may be marked as read-only or read/write in 
the ATU. The default state for a page read from a local disk is read-write while the default 
state for a remote page is read-only. Any number of read-only copies of a page are allowed to 
exist in the physical memories of nodes in the network at any one time. The coherency 
protocol guarantees that at any time there are either (a) zero or more read-only copies of the 
page or (b) exactly one read-write copy. Thus, if a read-write copy of a page exists in the 
physical memory of a node, then it is the only copy of the page in physical memory of any 
node in the network. The kernel of the node at which a page is stored on disk (the "owner 
node") maintains a record of any copies of a page that have been sent to other nodes in much 
the same way as page owners in IVY [16] keep a copy set for each page. Unlike the "shares" 
approach proposed in [9], which allows any node to distribute copies of a "granule" (subject 
to its share status), a MONADS owner node is the only node allowed to provide a copy of a 
page to resolve a page fault at another node. 

When a request for a read-only copy of a page is made to the owner node, one of several 
scenarios may apply: 

1. no copy of the page exists in main memory network-wide, 

2. one or more read-only copies of the page exist in main memory network-wide, or 

3. a read/write copy of the page exists in the main memory of a node. 

These situations are handled respectively as follows: 

1. a copy of the page is obtained from disk on the owner node, and then the copy is 
transmitted to the requesting node (if the request is remote) with read-only access 
rights; 

2. if a copy of the page exists in the physical memory of the owner node, it is 
transmitted to the requesting node, otherwise a copy of the page is brought into the 
memory of the owner node and then the page is transmitted with read-only access 
rights; 

3. the node with the read/write copy is requested to mark its copy as read-only, and to 
transmit to the owner node either an updated copy of the page, or a message 
indicating that the page has not been modified since the read/write access was 
granted. The owner node then maintains a record of the requesting node's access, 
and transmits a read-only copy of the page. 

If a node which has a read-only copy of a page wishes to write to the page, the owner node is 
informed. The owner node then sends a message to all nodes which have read-only copies of 
the page (except for the node requesting read/write access) requesting that the page be 
removed from the nodes' memories. When these requests have been completed with the 
owner sends a message to the requesting node giving permission for the access to be changed 
to read-write. 



As part of the management of virtual memory at a node, page discard may occur. If the page 
to be removed is not local, either (a) the page is read-only, or unmodified read/write, in 
which cases a message is sent to the owner node indicating that the page has been removed, 
allowing the owner node to update its records or (b) the page is modified read/write, in which 
case a copy of the page is sent to the owner node and the page is not removed until receipt of 
the page has been confirmed by the owner node. 

This protocol guarantees that all nodes see a consistent view of a page. It can result in 
considerable network traffic in the case that several nodes are constantly modifying the same 
page, since the page must be sent back to the owner node each time for distribution. 
However, this is not a particularly likely scenario since, in order to keep the modifications 
consistent, the processes on the nodes would have to synchronise their activities at a logical 
level5. Coherency protocol messages are only sent to nodes listed by the owner node as 
having copies of the page, requiring fewer messages than schemes such as "shares" [9], 
which broadcasts protocol messages, requiring the processing of messages by nodes with no 
interest in the subject page. 

3.5.  Network Wide Protection 

For the same reason that network naming is a non-issue, protection of data across the network 
creates no logical difficulties. The architecture does not distinguish between addressing local 
and remote data and thus the capability-based protection scheme provides control over access 
to all data. The problem of protection of data whilst in transit between nodes is of course 
another issue. To solve this we propose to encrypt data, with encryption being performed 
directly by the network hardware interface during transmission to reduce overheads. 

3.6.  Shutdown of a Node 

At any particular time the memory of each node contains an essentially random set of pages 
which may belong to an arbitrary set of nodes. It is important for system integrity that, before 
a node is shut down, any pages which have been modified are written back to disk. In 
addition, remote nodes must be notified so that the coherency control data described above 
may be updated appropriately. 

During system shutdown the kernel scans all pages of memory and determines, from 
information held in the ATU, which pages have been modified. Modified pages belonging to 
a local disk are simply written back, while modified pages belonging to remote nodes must 
be transmitted to the owner node. Shutdown does not complete until acknowledgement of 
receipt is received from all remote nodes involved. If the node being shut down has a read-
only copy of a remote page, it notifies the owner node that it is shutting down so that the 
owner node can update its coherency information. 

The node must also retrieve an up to date copy of any of its pages that currently exist with 
read/write access in the physical memories of remote nodes and any nodes containing copies 
of pages with read-only access must be instructed to remove them from their memory. Access 
to a removed page by a process at the remote node results in an exception condition. 

3.7.  Crash of a Node 

                                                 
5 In any case the effects of such a situation on network traffic can be considerably reduced (but not entirely eliminated) by 
introducing a small delay before removing write access from a page. 



As was described in the previous section it is critical for the correct operation of the system 
that, when a node goes off-line, it performs the correct shutdown sequence. Unfortunately 
this may not be possible in the case of a system crash at a node. Such a crash may be due to 
hardware or software failure and in both cases it is unlikely that a normal shutdown will be 
possible. Within a single node the consistency and integrity of the store can be guaranteed by 
using shadow paging [18], as described in [4, 26, 27], to implement a stable store. 

In [23] we describe how to implement a stable store on a single MONADS-PC. Each volume 
is moved from one stable state to the next by a sequence of checkpoint operations. 
Checkpoint operations may be instigated by a system call from a user program, or 
automatically by the kernel, for example to free up disk space occupied by shadow pages. A 
Shadowed Pages Table (SPT) is maintained for each volume to detect which pages from the 
volume have been shadowed since the last checkpoint operation. Stability is achieved on a 
per volume basis, and there is a multi-volume stabilise to ensure that cross-references 
between volumes do not cause inconsistencies following a crash. Only modified pages are 
shadowed, and at most two copies of a page exist on disk at any time, the latest version and 
the version as at the last checkpoint. At each checkpoint, reference to the SPT allows the disk 
space used to store the previous stable version of modified pages to be returned to the free 
disk space pool. The new stable version of pages form the basis for further system operation. 

As described earlier, each MONADS volume contains a volume directory, which exists in 
virtual memory. The root page of the volume is effectively the root of a tree of disk addresses 
of pages on the volume, and from it the disk location of any page on the volume can be 
located. After a checkpoint operation, a new tree is constructed, leaving the tree representing 
the last stable state intact. The last stage of a stabilise operation on a volume is the writing of 
the root page of the tree to one of two possible locations using Challis' algorithm [5] to 
ensure that the write operation is atomic. Both of the root pages are placed at well known 
disk locations so that they can be located and compared on system startup. Thus, following a  
crash, the store returns to the last consistent state. 

In the network environment there are several new problems. These include: 

• a request for a read/write copy of a page being denied because a "crashed" node has 
not signalled its removal of the page from its page table, 

• requests for read-only access to a page being denied because a read/write copy of a 
page exists on a non-responding node, and 

• a node is unable to complete its shutdown sequence because it cannot return 
modified pages to a node which has crashed. 

These problems are serious because they can result in a deadlock situation in addition to the 
loss of data integrity. In [8] we describe extensions and modifications to the single node 
stability scheme that ensure stability in a network of MONADS-PC computers. 

4.  EVALUATION 

Implementation of the network involved changes to the page-fault handler and creation of a 
"black box" process which looks like a disk to the page-fault handler. 

Modifications to the page-fault handler enable it to (a) detect local and remote faults and to 
request pages from local disks or remote nodes as necessary, (b) provide a page server 
function for remote nodes, (c) maintain tables as described above, (d) maintain data 
coherency, (e) take appropriate action at system shutdown, and (f) maintain system stability. 



The new "network" kernel process accepts page requests from the page-fault handler in 
exactly the same way as does the disk process. It hides network details (such as the 
underlying network architecture) from the rest of the MONADS kernel by (a) maintaining 
information about physical addresses and which nodes are currently on line, and (b) 
providing pages to the page-fault handler by requesting them from the appropriate remote 
node. 

The network process supports two types of message, short messages for page requests and 
protocol implementation, and long messages for page transfer. Page transfers are 4K bytes 
each. For small (less than 4K byte) objects, the unit of transfer is therefore larger than the 
object size, which means that the quantity of data transmitted between nodes is more than 
immediately required. Many applications exhibit locality of reference, in which case some of 
the apparently superflous data will in fact be needed in subsequent memory accesses6. For 
objects larger than one MONADS page, the described system is more efficient than systems 
that move the whole object to a remote node for processing at that node since only the pages 
of the object that are being processed are transferred. 

Application software written to run on a non-networked MONADS processor runs without 
change on a network of MONADS nodes in a stable virtual store. This is possible because, as 
explained earlier, pages of data are transferred in order to resolve page faults rather than in 
response to network specific commands. 

5.  CONCLUSION 

Traditionally the implementation of a network involves major changes to the system software 
and application software and the provision of large and complex utility software. In this 
paper we have described an alternative structure based on a network-wide uniform virtual 
memory. Security and protection are achieved via the use of capability-based addressing and 
coherency is guaranteed by the paging protocol. The store we have created exhibits stability, 
so that consistency of data following node or network failure is guaranteed. A major 
advantage of the scheme is that it involves little modification to the system software and is 
fully transparent to application software. 

A trial implementation of the network is currently being completed. The trial system uses 
ethernet as the physical medium and will have three MONADS-PC computers as nodes. Our 
experiences with this system will be reported at a future date. 
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